H2-Sponge: H2 storage potential of geological rock formations

TransHyDE

The federal government has provided a strong impetus for the use of hydrogen in all sectors of the energy system through its National Hydrogen Strategy (NWS). Hydrogen storage plays a crucial role in this, as hydrogen, being a gaseous energy carrier, is storable and can balance the varying demand and production of hydrogen. In addition to storing hydrogen in containers or pipes, geological formations also offer long-term storage options. The hydrocarbon industry has been using underground storage for decades to store large quantities of natural gas in the pore spaces of rocks (so-called pore storage) or in salt caverns. This project investigates whether these storage options meet high technological safety standards and to what extent they can be utilized within the infrastructure chain.

 

Objective  

In the project "H2-Sponge: H2 storage potential of geological rock formations", the first phase of "TransHyDE" aims to establish the conditions for future safe hydrogen storage and transport infrastructures.

Alongside the exploration of usability, all safety requirements and robust concepts for monitoring such facilities, as well as the redistribution of hydrogen to users, are examined. Key points include the geological requirements for the storage and cap rock, the prioritization of sites, and the experimental investigation of rocks in contact with hydrogen (Alms et al., 2023a-c). To simulate the physical and chemical interactions underground, an experimental test rig will be constructed as part of the project. This will enable the assessment of potential hydrogen storage rocks and the integrity of the storage. Additional aspects focus on the integrity of all technical components, as well as the strategic planning of monitoring concepts for seamless oversight of all processes, and the development of processing strategies with contaminant measurements for the distribution of underground-stored hydrogen in gas networks. The goal is to formulate proposals for handling hydrogen in geological underground storage and to develop suitable infrastructure and safety concepts.

The insights gained from the project will be evaluated and incorporated into a comprehensive analysis of "Safe Infrastructure", which will form the basis for "Scalable Solutions" in the second phase of TransHyDE (Pannek et al., 2024).

Services

  1. Geological consulting and potential assessment
  2. Laboratory determination of petrophysical rock parameters under H2 atmosphere and in-situ conditions
  3. Laboratory determination of rock-fluid-H2 interactions under in-situ conditions
Drill samples from the Bunter Sandstone
© Fraunhofer IEG/Mollwitz
Drill samples from the Bunter Sandstone
Wasserstoffpermeameter zur Bestimmung der H2-Permeabilität, H2-Porosität und des H2-Speichervermögens.
© Fraunhofer IEG/Mollwitz
Wasserstoffpermeameter zur Bestimmung der H2-Permeabilität, H2-Porosität und des H2-Speichervermögens.
Messung von Gaszusammensetzungen mithilfe eines Gaschromatographen
© Fraunhofer IEG/Mollwitz
Messung von Gaszusammensetzungen mithilfe eines Gaschromatographen
Rührautoklav mit Gesteinsprobe
© Fraunhofer IEG/Mollwitz
Rührautoklav mit Gesteinsprobe
Rührautoklav zur experimentellen Untersuchung von Gestein-Fluid Wechselwirkungen
© Fraunhofer IEG/Mollwitz
Stirring autoclave for the experimental investigation of rock-fluid interactions.
Hochdruck-/Hochtemperaturbehälter zur Untersuchung von Gestein-Fluid Wechselwirkungen
© Fraunhofer IEG/Mollwitz
High-pressure/high-temperature vessel for the investigation of rock-fluid interactions.
Die Karte zeigt potenzielle Standorte für die unterirdische Speicherung von Wasserstoff im Norddeutschen Becken (BSm: Buntsandstein). Grüne Linien zeigen bestehende Wasserstoffpipelines und weiße Linien zukünftige Entwicklungspläne (IPCEI). Industriesymbole symbolisieren die chemische Industrie (rot), die Stahlindustrie (braun) und die Raffinerien (schwarz) nach Neuwirth et al. (2022). Terminalsymbole symbolisieren bestehende und zukünftige Ammoniak (grün) und LNG Importterminals (blau). Braun schraffierte Flächen stellen die geographische Verbreitung des Buntsandstein-Aquifers (braun), seiner Fallen (hell braun/oka) und Kohlenwasserstofffelder (in Betrieb: grau, erschöpft: schwarz) nach Knopf und May (2007) und LBEG (2023) dar. Weitere Details sind in Alms et al., 2023c zu finden.
© Fraunhofer IEG mit Daten aus Neuwirth et al., 2022; Knopf et al., 2017; Landesamt für Bergbau Energie und Geologie 2023
Die Karte zeigt potenzielle Standorte für die unterirdische Speicherung von Wasserstoff im Norddeutschen Becken (BSm: Buntsandstein). Grüne Linien zeigen bestehende Wasserstoffpipelines und weiße Linien zukünftige Entwicklungspläne (IPCEI). Industriesymbole symbolisieren die chemische Industrie (rot), die Stahlindustrie (braun) und die Raffinerien (schwarz) nach Neuwirth et al. (2022). Terminalsymbole symbolisieren bestehende und zukünftige Ammoniak (grün) und LNG Importterminals (blau). Braun schraffierte Flächen stellen die geographische Verbreitung des Buntsandstein-Aquifers (braun), seiner Fallen (hell braun/oka) und Kohlenwasserstofffelder (in Betrieb: grau, erschöpft: schwarz) nach Knopf und May (2007) und LBEG (2023) dar. Weitere Details sind in Alms et al., 2023c zu finden.

Current publications and results

Alms, K., Ahrens, B., Graf, M., & Nehler, M. (2023a). Linking geological and infrastructural requirements for large-scale underground hydrogen storage in Germany. Frontiers in Energy Research, 11, 1172003. https://doi.org/10.3389/fenrg.2023.1172003

Alms, K., Ahrens, B., Graf, M., & Nehler, M. (2023b). Underground hydrogen storage in Germany: Geological and infrastructural requirements. Symposium on Energy Geotechnics 2023, 1–2. https://doi.org/10.59490/seg.2023.569

Alms, K., Berndsen, M., Groeneweg, A., Graf, M., Nehler, M., & Ahrens, B. (2023c). Underground Hydrogen Storage in the Bunter Sandstone Formation in the North German Basin: Capacity Assessment and Geochemical Modeling. Energy Technology, 2300847. https://doi.org/10.1002/ente.202300847

Pannek, C., Wanzenberg, E., Michler, T., Schweizer, F., Alms, K., Hoefer, U., ... & Engelhaupt, S. (2024). TransHyDE. Die Wasserstoff-Infrastruktur in Deutschland: Sicher in die Zukunft. https://doi.org/10.24406/publica-3126